Energy Efficient Pumping Systems

A design guide

By Chris Parsloe

Supported by

bretrust

BG 12/2011
ACKNOWLEDGEMENTS

This document has been prepared with the support of BRE Trust. The project was undertaken by BSRIA with the assistance of a project steering group drawn from the following companies who provided BSRIA staff with technical assistance and supported the publication of this guide:

Andrew Reid and Partners LLP
Belimo Automation UK Ltd
Crane Fluid Systems Ltd
Danfoss Randall UK
Freste Ltd
Grundfos Ltd
Herz Valves UK Ltd
SAV UK Ltd.

The research project was led by Dr Arnold Teekaram of BSRIA, with support from Dr Fiona Lowrie of BSRIA and Chris Parsloe of Parsloe Consulting. The guidance was written by Chris Parsloe with the assistance of a project steering group who were:

Andy Lucas
David Considine
David Queen
Howard Hall
Jan Hansen
Lars Fabricius
Luke Collier
Paul Wightman
Robert Fowler
Stephen Hart.

The document has also been reviewed by Mike Campbell of AECOM and members of the BSRIA Publications Panel:

Jim Mellish and Peter Clackett, Skanska
Mitch Layng, Prupim.

This publication has been designed and produced by Alex Goddard and Ruth Radburn.

Every opportunity has been taken to incorporate the views of the contributors, but final editorial control of this document rests with BSRIA.

This publication has been printed on Nine Lives Silk recycled paper.
CONTENTS

1 INTRODUCTION
1.1 Scope
1.2 Guide structure

2 SUMMARY OF RECOMMENDATIONS
2.1 Variable or constant flow

3 PUMP ENERGY FUNDAMENTALS
3.1 Calculating pump energy
3.2 Pump affinity laws
3.3 Pump speed control

4 PIPE SIZING

5 PIPE LAYOUT

6 SYSTEM CONTROL ISSUES
6.1 Remote sensor control
6.2 Temperature differentials
6.3 Constant and variable temperature circuits
6.4 Effect of flow on temperature differential
6.5 System by-passes
6.6 Pump minimum flow-rate
6.7 Flow control at terminals
6.8 Secondary hot water circuits
6.9 Primary circuits
6.10 Low emission heat sources

APPENDIX A: VALVE TERMINOLOGY
APPENDIX B: SYSTEM LIFE CYCLE ENERGY CALCULATIONS
APPENDIX C: COMMISSIONING ISSUES
REFERENCES
FIGURES

Figure 1: Pressure loss diagram for a simple pumped circuit 5
Figure 2: Constant pressure pump speed control 9
Figure 3: Proportional pump speed control 9
Figure 4: Remote sensor pump speed control 10
Figure 5: Notional terminal unit layout 13
Figure 6: Layout 1 - Single branch flow return layout 14
Figure 7: Layout 2 - Split branch flow return layout 14
Figure 8: Layout 3 - Split branch reverse return layout 14
Figure 9: Layout 4 - Looped reverse return layout 14
Figure 10: Layout 5 - Single flow return layout feeding valve modules 14
Figure 11: Alternative valve and pump control design solutions 15
Figure 12: Comparative pump energy consumption for alternative pipe system design solutions 15
Figure 13: Example of potential moving index 17
Figure 14: Secondary pump arrangements for constant and variable temperature circuits 19
Figure 15: Constant flow by-pass at end of radiator circuit 21
Figure 16: By-pass through an end-of-line four port diverting control valve 22
Figure 17: Minimum flow rate for canned rotor pumps 23
Figure 18: Determining pump power values at zero flow under different pump speed control regimes 24
Figure 19: Design resulting in excess flows and pressures across terminal units 25
Figure 20: Typical temperatures across hot water cylinder at 30 K design temperature differential 28
Figure 21: Plate heat exchanger unit for provision of hot water 29
Figure 22: Mixing of flows in low loss headers 30
Figure 23: Variable flow primary circuit using boiler shunt pumps 31
Figure 24: Variable flow primary circuit using single primary pump set 32
Figure 25: Primary circuit integrating low emission heat source alongside back-up boilers 33
Figure 26: Total life cycle energy consumption for a constant flow steel pipe system 36
Figure 27: Total life cycle energy consumption for a variable flow steel pipe system with constant pressure control of pump speed 37
Figure 28: Total life cycle energy consumption for a variable flow steel pipe system with remote sensor control of pump speed 37
ABBREVIATIONS

BMS Building energy management system
CFR Constant flow regulator
DRV Double regulating valve
DPCV Differential pressure control valve
OP Orifice plate flow measurement device
DRV Double regulating valve
PICV Pressure independent control valve
TRV Thermostatic radiator valve

For detailed explanation of valve functions, refer to Appendix A.

SYMBOLS

- Isolating valve
- Drain off cock
- Lockshield valve
- Double regulating valve
- Fixed orifice flow measurement device (orifice plate)
- Fixed orifice double regulating valve (commissioning set)
- Constant flow regulator
- Differential pressure control valve
- Two-port control valve
- Three-port control valve
- Four-port control valve
- Thermostatic radiator valve
- Pressure independent control valve
- Pump
- Safety relief valve
- Pressure gauge
- Temperature gauge
- Flexible coupling
- Strainer
- Blanked flange pipe end
- Pressure test point
- Non-return valve
- Automatic air vent
1 INTRODUCTION

1.1 SCOPE

This application guide provides recommendations on the design of energy efficient pumping systems.

The potential for reducing pump energy consumption is substantial. The US Department of Energy estimates that pumping accounts for 20% of the world’s energy use by electric motors[1]. Europump (a pan European association of pump manufacturers) estimates that systems could be 30 to 50% more energy efficient by careful consideration of components, design and installation[2]. This guide shows some ways in which this efficiency may be achieved.

The recommendations presented here are based on analyses of alternative pipe sizing methods, pipework layouts, valve selections, pump control options and system control measures. Separate research reports for each recommendation are also available from BSR1A.

In building services applications, heating and cooling systems usually incur the largest pumping loads. This guide therefore focuses mainly on these applications. Cooling systems usually offer the best scope for pump energy savings due to the larger flow rates involved.

Most of the guidance is applicable to both heating and cooling applications. Some sections are written specifically for heating systems, including district heating, because a lack of regard for pump energy may lead to missed energy savings elsewhere. For example, excess flows tend to lower system temperature differentials, thereby reducing the effectiveness of some low carbon emission or renewable energy heat sources.

1.2 GUIDE STRUCTURE

Section 2 provides an executive summary of the main design recommendations. The research process, its findings, and conclusions are explained in Sections 3 to 6.