THE GREEN GUIDE TO SPECIFICATION

An Environmental Profiling System
for Building Materials and Components

Fourth edition

Jane Anderson
BRE Global

David Shiers
Oxford Brookes University

Kristian Steele
BRE Global
CONTENTS

Foreword v
Acknowledgements vi
Project sponsors vii
The authors viii

PART 1 INTRODUCTION

1 Background 3
2 *The Green Guide* and related BRE titles 6
3 Life cycle assessment (LCA) in *The Green Guide* 10
4 How *The Green Guide to Specification* was compiled 18

PART 2 USING THE GREEN GUIDE

5 How to use *The Green Guide to Specification* 27

PART 3 THE GREEN GUIDE RATINGS

6 *The Green Guide* tables 33
 6.1 Ground floors 39
 6.2 Upper floors 53
 6.3 Separating floors 67
 6.4 Roofs 87
 6.5 External walls 129
 6.6 Windows and curtain walling 185
 6.7 Internal walls 189
 6.8 Separating walls 197
 6.9 Insulation 205
 6.10 Landscaping 209

Appendix: Project steering group and peer review panels 219
Contacts and further information 220
References 221
Index 223
Many organisations in both the public and private sectors are finding that ‘greener’ property can lead to lower running costs, reduced enviro-legal risks, greater occupier satisfaction (through better working environments) and enhanced PR and marketing benefits. The numbers of businesses now signing up to Corporate Social Responsibility programmes is evidence of this growth in environmental and social awareness. Better, more environmentally responsible choices regarding the types of materials that we put into our buildings are therefore central to reducing the global environmental impact of the property sector.

In this book, building materials and components are assessed in terms of their environmental impact across their entire life cycle – ‘from cradle-to-grave’, within comparable specifications. Such accessible and reliable information will be of great assistance to all those involved in the design, construction and management of buildings as they work to reduce the environmental impact of their properties.

We are sure that this book will help to ensure that in the future, property professionals will be able to make the soundest possible environmentally responsible choices in their materials selection.

Neville Simms
Chairman
BRE Trust

Jonathon Porritt
Chairman
Sustainable Development Commission
ACKNOWLEDGEMENTS

The authors wish to acknowledge the contribution made and the support given by the following individuals and organisations. Particular thanks are due to the Construction Products Association and their members for helping the team with information capture and constructive criticism. A special thank you is given to Jane Thornback, without whose hard work and support The Green Guide would not be possible.

BRE Global Project Team
Kim Allbury
Tim Allan
Julia Barnard
Victoria Blake
Andrew Dutfield
Sue Fakes
Emma Franklin
Katie Halls
Jo Mundy
Kavita Ramchandra
Bridget Randall
Paul Thistlethwaite

BRE Global
David Crowhurst
Richard Hardy

BRE
Peter Bonfield
Mike Clift
Martin Cook
Angus Jack
Chris Watson

Oxford Brookes University
Professor Martin Avis
Richard Grover

Others
John Bowdidge
Kathryn Bourke
Suzy Edwards
Professor Anthony Heath
Dr Karen Kearley
Miles Keeping
Professor Anthony Lavers
Professor Paul McNamara
Alan Pearman
Eva Schmincke
Jane Thornback
Wayne Trusty

Faithful+Gould
University of Oxford
University of Oxford
CVA Grimley
White & Case
PraPIM
Centre for Decision Research, University of Leeds
Five Winds, Germany
Construction Products Association
Athena Sustainable Materials Institute, Canada
PROJECT SPONSORS

bre

bretrust

BERR | Department for Business Enterprise & Regulatory Reform

department for children, schools and families

energy saving trust

Homes & Communities Agency

NHBC

ogc buying.solutions

OXFORD BROOKES UNIVERSITY

POST OFFICE

RBS

The Royal Bank of Scotland Group

WILLMOTT DIXON CONSTRUCTION

HSBC

WRAP

Material change for a better environment
THE AUTHORS

Jane Anderson BA MSc DipLCM FRSA
BREEAM Materials, BRE Global
Jane is an expert in the development and application of Life Cycle Assessment (LCA) methodology for building construction and materials. She is Technical Manager of the BREEAM Materials Group where she has been a key member since 1998. She co-authored The Green Guide to Housing Specification and the third edition of The Green Guide to Specification. She gained a distinction in her master’s degree in Architecture at the University of East London.

David Shiers BA BArchHons CertEd Educ RIBA
Department of Real Estate,
Oxford Brookes University
A qualified architect and teacher and environmental consultant with AEA Technology, David has written extensively on many property-related environmental issues and was co-author and designer of the methodology underpinning the original version of The Green Guide to Specification. David has co-edited a special Property and the Environment edition of the journal Construction Management and Economics with Professor Anthony Lavers and has contributed to other publications including Property Management, The Journal of Property Investment and Finance, and Property Review. He has also advised and collaborated with many organisations on green issues including the Housing Corporation, the GLA, Urban Buzz, DTZ, and King Sturge. He was a Visiting Research Scholar at the University of Oxford in 2002 and is a member of the CIB International Working Commission on Sustainable Construction.

Kristian Steele MEng EngD
BREEAM Materials, BRE Global
A civil engineer by training, Kristian has a history in infrastructure management, environmental assessment and sustainability. Kristian joined BRE in 2002 following completion of an EngD in Environmental Technology with the University of Surrey and Surrey County Council. Kristian is currently group leader of the BREEAM Materials team. The BREEAM Materials team provides advice, training and information on the environmental performance of building systems and is responsible for the development of The Green Guide to Specification and Envest. It also manages the BRE Certification scheme for Environmental Product Declarations.
PART 1 INTRODUCTION

1 BACKGROUND
1.1 Environmental conservation 3
1.2 The purpose of The Green Guide 3
1.3 The development of The Green Guide 4
1.4 Content and layout of The Green Guide 4
1.5 Environmental impacts 4
1.6 The Green Guide rating system 4
1.7 Status of specifications 5
1.8 Balancing The Green Guide with other requirements 5

2 THE GREEN GUIDE AND RELATED BRE PUBLICATIONS AND TOOLS
2.1 The Environmental Profiles Methodology and database 6
2.2 Previous editions of The Green Guide to Specification 7
2.3 Web updates and The Green Guide to Specification Online 7
2.4 BREEAM and EcoHomes 8
2.5 Envest 8
2.6 Green procurement and responsible sourcing 8

3 LIFE CYCLE ASSESSMENT (LCA) IN THE GREEN GUIDE
3.1 Life Cycle Assessment (LCA) 10
3.2 The Environmental Profiles Methodology 11
3.3 Creating a single score: Ecopoints and weighting 14
3.4 Applying the Environmental Profiles Methodology to construction systems in The Green Guide 15
3.5 Sources of LCA data in The Green Guide to Specification 16

4 HOW THE GREEN GUIDE TO SPECIFICATION WAS COMPILED
4.1 Choosing the building element categories 18
4.2 Choosing the building specifications 18
4.3 Creating the Environmental Profile for a specification 19
4.4 Generating The Green Guide environmental impact ratings 19
4.5 Generating The Green Guide summary ratings 20
4.6 Other information 20
1 BACKGROUND

The purpose of this 4th edition of *The Green Guide to Specification* is to provide designers and specifiers with easy-to-use guidance on how to make the best environmental choices when selecting construction materials and components. It is more comprehensive than its predecessors and contains more than 1200 specifications used in various types of buildings.

Developing the content has involved the widest possible consultation with industrial partners, manufacturers and trade associations, academics and researchers, and reference to a wide range of other reliable sources of environmental data and information.

The whole process has also been the subject of more rigorous peer review procedures than its predecessors and, as a result, both the methodologies used and the findings made are as robust and dependable as they can be at the present time in the field of environmental impact assessment and life cycle assessment of construction products.

1.1 ENVIRONMENTAL CONSERVATION

Many in the property sector are becoming more aware of the need to reduce exposure to ‘environmental risk’. While the most common construction and development-related risks have been associated with polluting activities or the failure of specialists to deal with specific environmental hazards, the future scope of environmental liability may have far-reaching implications for the construction industry. The impact of the construction process and the associated impact from materials extraction and manufacture in terms of energy and resource use or levels of emissions on global conditions could be identified as a major ‘indirect’ environmental hazard. As such, it is possible that these issues will become potential legal liability flashpoints and that designers, specifiers and materials manufacturers will be obliged to take this into account in the design and construction process.

Environmental impacts come in many different forms. It is widely accepted that there is mounting evidence to suggest that the concentrations of carbon dioxide (CO₂) and other ‘greenhouse’ gases (such as methane) in the atmosphere are increasing. This, it is argued, is leading to global warming and climate change. As the main source of these greenhouse gases is the burning of fossil fuels for energy, a reduction in the energy levels required in the manufacture of building materials represents an opportunity for producers of materials to minimise the environmental impact of their products. The release of chemicals into the atmosphere from manufacturing processes has been linked to damage to the ozone layer and to other effects that are harmful to the environment and human health. Volatile organic compound (VOC) emissions may be irritant or toxic. Nitrogen dioxide and nitrogen oxide (NOₓ), released in combustion processes, are both contributors to acid rain and react with VOCs in sunlight to produce photochemical smog. This smog is implicated in an increased incidence in asthma and respiratory illness. Sulfur dioxide (SO₂), also released from the combustion of oil and coal products, is a main contributor to acid rain. All these impacts are relevant and present in building product manufacture. Suppliers and producers have a responsibility to understand the relative impacts of manufacture and to work towards impact mitigation. Designers and specifiers can assist in this process through making more environmentally responsible choices.

Similar responsibilities are evident in other parts of the construction value chain. Property investors and funding institutions, under pressure from shareholders and insurers, are also seeking a ‘greener’ and more ‘socially responsible’ approach to the design and procurement of buildings, and many property-owning organisations are signing up to Corporate Social Responsibility (CSR) initiatives. A more carefully considered, environmentally aware approach to the specification of materials is important in being able to demonstrate that projects are well managed and are protecting shareholders’ interests through minimising the risks associated with environmental impact. Across all these issues, *The Green Guide* is designed to provide robust information to assist in decision-making processes.

1.2 THE PURPOSE OF THE GREEN GUIDE

Before the publication of the first edition of *The Green Guide* in 1996, there was little accessible, reliable or methodologically robust guidance available for specifiers seeking to minimise the environmental impacts of building materials. Much of the relevant research and information at that time offered either generalised guidance, usually unsupported by quantitative data, or, alternatively, complex numerical assessments that proved difficult for designers and clients to interpret. The first edition of this publication therefore aimed to
Like its predecessors, this fourth edition of *The Green Guide to Specification* provides designers and specifiers with easy-to-use guidance on how to make the best environmental choices when selecting construction materials and components. It is more comprehensive than its predecessors; it contains more than 1200 specifications used in six types of building:

- Commercial, such as offices
- Educational, such as schools and universities
- Healthcare, such as hospitals
- Retail
- Residential
- Industrial.

The principal building elements covered in this edition of *The Green Guide to Specification* include:

- Floors
- Roofs
- Walls
- Windows
- Insulation
- Landscaping.

The performance of each specification is measured against a range of environmental impacts, including:

- climate change
- toxicity
- fossil fuel and ozone depletion
- levels of emissions and pollutants
- mineral and water extraction.

The Green Guide to Specification provides robust information to assist decision-making by translating numerical life cycle assessment data into a simple A+ to E scale of environmental ratings, enabling specifiers to make meaningful comparisons between materials and components.

The Green Guide to Specification is an essential tool for architects, surveyors, building managers and property owners seeking to reduce the environmental impact of their buildings by informed and responsible selection of construction materials and components.

RELATED TITLES FROM IHS BRE PRESS

- **PUTTING A PRICE ON SUSTAINABLE SCHOOLS**
 FB 15, 2008

- **SUSTAINABILITY THROUGH PLANNING**
 BR 498, 2008

- **PUTTING A PRICE ON SUSTAINABILITY**
 FB 10, 2005

- **A SUSTAINABILITY CHECKLIST FOR DEVELOPMENTS**
 BR 436, 2002

RELATED TITLES FROM WILEY-BLACKWELL

- **RESIDENTIAL LANDSCAPE SUSTAINABILITY**
 978-1-4051-5873-2, 2008

- **THE BUILDING REGULATIONS, 13TH EDITION**
 978-1-4051-5922-7, 2007

- **THE ARCHITECT IN PRACTICE, 9TH EDITION**
 978-1-4051-2467-6, 2005

- **SUSTAINABLE PROPERTY DEVELOPMENT**
 978-0-6320-5804-4, 2004

- **ARCHITECTS’ DATA, 3RD EDITION**
 978-0-6320-5771-9, 2002